Szerezze be az egyedülálló Stratasys szénszálas FDM technológiát a fejlett kisszériás gyártásokhoz, gyártósori JIG-ekhez és prototípusok készítéséhez.
Speciális alkatrészeket készíthetünk szénszállal megerősített poliamid (Nylon) alapanyagokból a Stratasys szabadalom védett FDM technológiájával.
A Stratasys által kínált Nylon12CF alapanyag kiválóan alkalmas fém gyártósori eszközök és alkatrészeg gazdaságos és könnyű 3D nyomtatott alternatívával történő kiváltására.
A Stratasys kínál egyedül szénszál erősítésű, szabadalommal védett FDM technológiájú 3D nyomtatást. A piac más szereplői FFF technológiára épülő szénszálas megoldásokat kínálnak, az FDM technológia előnyei nélkül.
A Fortus 380/450 és F900 Carbon Fiber Edition 3D nyomtatók FDM Nylon 12CF szénszálas vagy ASA alapanyagot használnak a nyomtatáshoz. A fűtött munkatér lehetővé teszi a zsugorodás- és vetemedés mentes alkatrészek nyomtatását és az alkatrészek biztonsággal ismételhető gyártását. Az oldható támaszanyagok használata teljes tervezési szabadságot ad az összetett formatervek kialakításához, beleértve az üregeket és az alámetszéseket is.
A Párizsi Egyetemi Kórházat 60 Stratasys 3D nyomtató segíti a koronavírus ellen folytatott küzdelemben
A párizsi kórházi rendszer 60 Stratasys 3D nyomtatót telepít a COVID19 elleni küzdelemhez. Az F123 sorozatú 3D nyomtatókat 24 órán belül a kórházba szállították és telepítették.
A Párizsi Egyetemi Kórházban (L’Assistance Publique – Hôpitaux de Paris), amely Európa legnagyobb kórházi rendszere, 60 darab Stratasys 3D nyomtatót telepítettek a koronavírus ellen folytatott küzdelem támogatására. A megrendeléstől számított 24 órán belül kiszállított berendezések lehetővé teszik a francia kórházi rendszer számára, hogy orvosi eszközöket és alkatrészeket gyártson a helyszínen a felmerülő igények kielégítésére.
Stratasys F123 3D nyomtatók a Párizsi Egyetemi Kórházban (Fotó: 3Dprintingmedia.network)
A 60 darab F123 sorozatú 3D nyomtatót, amely a kórház egy 150 négyzetméteres létesítményben kapott helyet, a Stratasys franciaországi viszonteladója, a CADvision szállította. Az FDM technológiájú berendezéseket mindenféle alkatrész nyomtatásához használják, arcvédő pajzsoktól és maszkoktól kezdve, elektromos fecskendőszivattyúkon és intubációs berendezéseken át, légzőkészülék szelepekig bezárólag, hogy segítsenek enyhíteni a koronavírus járvány okozta nehézségeket.
A kórháznak a meglehetősen nagy volumenű 3D nyomtatási projekt kezelésében az orvosi ágazatban nagy tapasztalattal rendelkező 3D nyomtatási szolgáltató, a Bone3D segít: mérnököket biztosít, akik irányítják a Stratasys flotta telepítését, üzemeltetését és szervizelését. A kórház emellett elindított egy külön 3D nyomtatási platformot is (3dcovid.org), amely segít a párizsi és környékbeli egészségügyi dolgozók 3D nyomtatott eszközigényeinek villámgyors kielégítésében Franciaországnak a járvány által leginkább súlytott részén.
Telepítés alatt a Stratasys F123 3D nyomtatók a Párizsi Egyetemi Kórházban (Fotó: Facebook.com/Stratasys)
3D nyomtatókkal biztosítják a COVID19 ellen szükséges felszereléseket
A Párizsi Egyetem és a Kering Csoport támogatásával megszerzett 3D nyomtatási erőforrások lehetővé teszik az egészségügyi intézmények széles skálája számára, hogy megoldja a felmerülő ellátási hiányokat, és biztosítsa a munkatársai védelméhez és a kórházi betegek kezeléséhez szükséges felszereléseket.
“A COVID19 elsöprő és súlyos jellege folyamatosan kihat a világ legnélkülözhetetlenebb berendezéseinek ellátási láncára”- mondta Andreas Langfeld, a Stratasys EMEA elnöke. „A 3D nyomtatási technológiának köszönhetően a Párizsi Egyetemi Kórháznak házon belül rendelkezésére áll a saját, gyors-reagálású ellátási lánca, így a termelést közvetlenül a szükséges helyre helyezve, azonnal biztosítani tudja a nélkülözhetetlen felszereléseket a frontvonalban küzdő, naponta emberéleteket mentő egészségügyi dolgozók számára.”
A Párizsi Egyetemi Kórház épülete (Fotó: 3Dprintingmedia.network)
A Stratasys más módon is támogatja a COVID19 elleni küzdelmet: partnerei segítségével ezerszámra állít elő és juttat el arcvédő pajzsokat az egészségügyben dolgozók számára. A vállalat azt mondta, hogy a múlt héten több mint 350 000 arcvédő eszköz iránti kérelmet kapott, és gyártópartnereket keres a sürgős igények kielégítésére.
3D nyomtatott arcvédő pajzsokkal segítjük az egészségügyben dolgozókat
Eddig többek között a következő kórházakban, rendelőkben örülhettek a védőeszközöknek:
az Uzsoki Kórházban, (a fotó a VARINEX 3D nyomtatási bemutatótermében készült)egy XIV. kerületi háziorvosi rendelőben,egy XVII. kerületi sürgősségi fogászati rendelőben,egy XIV. kerületi állatorvosi rendelőben,a Ráskay Gyermekrendelőben,a Péterfy Kórházban,a Heim Pál Kórházban,a Margit Kórházban,egy óbudai háziorvosi rendelőben,
valamint a Bethesda és a Bajcsy-Zsilinszky Kórházban örülhettek a védőeszközöknek.
Gépeink teljes kapacitással dolgoztak a húsvéti ünnepek alatt is, így a héten további egészségügyi intézményeket tudunk 3D nyomtatott arcvédő pajzsokkal támogatni. Hamarosan beszámolunk róla, hová kerültek az újabb védőfelszerelések.
Amennyiben szeretne többet megtudni a VARINEX Zrt.-nél elérhető 3D nyomtatási technológiákról, kattintson IDE!
A cseppfertőzéssel terjedő, általában a vírusok és baktériumok által terjesztett betegségek ellen kiváló védelmet nyújt az arcvédő pajzs használata a szájmaszk mellett.
Akiknek ajánljuk:
Egészségügyi dolgozók számára
Bankfiókban, ügyfélszolgálatokon dolgozók számára
Tanárok, óvónők, logopédusok számára
Ipari felhasználásra
Munkavédelmi felhasználásra
Szépségiparban dolgozók számára
Kereskedelemben dolgozók számára
Rendvédelmi dolgozók részére
Mindenkinek, aki repülőgépen utazik
Mindenkinek, aki munkája során kapcsolatba lép más emberekkel
Jellemzők:
Teljes arcvédelmet biztosít
Állítható méretű fejpánt
Magas minőségű, műszaki műanyagok
Sterilizálható PP keret
PETG mérsékelten karcálló védőlemez
Minden eleme fertőtleníthető, így folyamatosan használható
Szemüveggel és szájmaszkkal együtt is kényelmesen használható
Az arcvédő pajzs ára 1 000 forint + ÁFA, az alábbi űrlap kitöltésével rendelhető. A minimális rendelési mennyiség 10 darab.
Felhívjuk figyelmét, hogy az arcvédő pajzs nem hivatalosan elfogadott védőfelszerelés. Az arcpajzs használata csak saját felelősségre történhet, a VARINEX Zrt. nem vállal garanciát a használatból eredő károkért. Az arcpajzs keret alapanyag PP anyag, az átlátszó védőjazs rész PETG, mindkettő sterilizálható.
BALESETI SÉRÜLÉSEKNÉL, FEJLŐDÉSI RENDELLENESSÉGEKNÉL NEM JÓK A SOROZATGYÁRTOTT CSONTPÓTLÁSOK
Az ortopédiai, onkológiai és a traumatológiai műtéteknél sok esetben kiválthatják a „konfekció” pótlásokat, a fogászatban is áttörést hozhatnak, a fejlődési rendellenességek korrekciójánál pedig óriási jelentőségűek azok az egyénre szabott orvosbiológiai implantátumok és segédeszközök, amelyeknek a gyártási technológiáját magyar kutatók fejlesztették ki.
Edit néninek három évvel ezelőtt protézisre cserélték elhasználódott csípőízületét. A műtétnek köszönhetően a fájdalmai megszűntek, csupán egyetlen dolog nem stimmel: az operált oldalon Edit néni lába két centivel rövidebb lett. Ez sajnos nem minden esetben elkerülhető, hiszen az idős asszony szervezetébe is egy sorozatgyártott implantátumot építettek be, amelyből ugyan sokféle méret létezik, de egyik sem pontosan olyan, mint amire az adott betegnek szüksége van. Ezért is nagy jelentőségű, hogy magyar kutatás-fejlesztési együttműködés eredményeként személyre szabott implantátumok készülhetnek a betegeknek. A Budapesti Műszaki és Gazdaságtudományi Egyetem (BME) nyolc tanszéke ipari partnerével, a 3D-s nyomtatásban évtizedes tapasztalatú Varinex Zrt.-vel konzorciumban fejlesztette ki az egyénre szabott orvosbiológiai implantátumok és segédeszközök új generációs gyártási lehetőségeit.
Mint Falk György, a cég stratégiai igazgatója, a projekt koordinátora a Magyar Nemzetnek elmondta: a személyre szabott implantátumoknak a legkülönfélébb esetekben lehet szerepük. Nemcsak kopásos elváltozásoknál, de például baleseteknél, amikor mondjuk koponyacsontot kell pótolni vagy a fogászatban, ha jelentős mértékű az állkapocsban a csontvesztés. De a testre szabott implantátumoknak különleges jelentőségük van a fejlődési rendellenességeknél, hiszen az ilyen esetekben teljesen eltér az anatómia a megszokottól.
A Nemzeti Kutatási és Innovációs Hivatal támogatásával lezajlott kutatás részeként az adott beteg CT-, MRI- és/vagy röntgenfelvételeiből kiindulva fém- vagy polimerporból rétegről rétegre építik fel az implantátumot. Annak érdekében, hogy a csontpótlás az összes felmerülő igénynek megfeleljen – például hogy az implantátum ne csak pontosan illeszkedjen, de anyaga lehetőséget adjon a minél szervesebb csontbenövésre –, csaknem kétszáz paraméteren tudnak változtatni. – A fejlesztés elsősorban ortopédiai, onkológiai és kisebb mértékben a traumatológiai eseteknél jelenthet újszerű megoldást. Ugyanakkor bizonyos egyedi orvosi műszerek gyártásánál is nélkülözhetetlennek tűnik a kifejlesztett módszerünk – tette hozzá Falk György.
Rétegről rétegre készítik el az egyedi csontpótlásokat. Gyorsabb a gyógyulás, biztosabb a felépülés (Fotó: Kurucz Árpád)
Takács Jánostól, a BME professor emeritusától megtudtuk: a projekt lényege nem csupán az, hogy egyedileg készül, hanem hogy ennek ellenére – hasonlóan a sorozatgyártotthoz – minden egyes implantátumnak van minőségbiztosítása is. Ezt úgy tudták elérni, hogy a gyártási folyamat megfelelő pontjaiban biztosították a visszacsatolás, így a korrekció lehetőségét is. Minden egyes gyártási ponthoz műveleti utasítást készítettek, ez alapján pedig pontosan visszakövethető a gyártás minden egyes mozzanata. Ez nagy jelentőségű, és az orvosnak biztosítékot nyújt arra, hogy pontosan abból az anyagból, olyan méretben és azzal a kialakítással kapja meg az implantátumot, amire a betegének szüksége van.
A professzor azt is elmondta: a technológia a hétköznapi életben 3D-s nyomtatásként ismertté vált additív gyártás, amelynek során biokompatibilis fémporból (titánból vagy rozsdamentes acélból) rétegenként építik fel a számítógépen megtervezett csontpótlást. Ennél az eljárásnál azonban a kötőanyag nem ragasztó, hanem lézersugár olvasztja össze a porszemcséket egy 20 mikrométernyi, nagyjából a hajszál egyötödének megfelelő vastagságú réteggé. Hogy aztán ebből állkapocs- vagy koponyacsont, esetleg kisujj vagy fogászati csontpótlás lesz, az már az orvosok igényeitől és a betegek szükségleteitől függ.
Falk György szerint egyre nagyobb az igény a jó minőségű, betegre szabott implantátumokra, hiszen gyorsabb gyógyulást, biztosabb felépülést biztosít, ha az implantátumot alakítják a beteg adottságaihoz és nem fordítva. Azt azonban egyelőre nem tudni pontosan, mi lesz a folytatása a tavaly év végén zárult hároméves projektnek. Mint Takács János fogalmazott: létrejött a know-how, az eszközpark, de ahhoz, hogy bármelyik kórház bármelyik orvosa rendelhessen ilyen egyedi implantátumot, megfelelő jogszabályi háttér is kell.
Behozhatatlan lemaradást szenvedhetnek el azok a gyártóvállalatok, amelyek a következő években nem kezdenek el foglalkozni a 3D nyomtatással. A világpiacon már a vállalatok 23 százaléka használja ezt a technológiát.
Nem kell hónapokat várni az első funkcionális tesztekre a gyártóvállalatoknak, néhány óra alatt elkészíthető az első prototípus 3D nyomtatással, amely amellett, hogy nagyban felgyorsítja a termékfejlesztést a hozzá kapcsolódó költségeket is töredékére redukálja.
Legyen szó akár autóiparról, akár háztartási elektronikai cikkekről, amely gyártók nem kezdik el használni ezt a technológiát, hamarosan behozhatatlan lemaradást szenved el
– mondta lapunknak Falk György, a Varinex Zrt. igazgatótanácsának elnöke. A szakember a műanyag és a fém alkatrészek gyártásában lát jelenleg nagy bővülési lehetőséget a 3D nyomtatásnak. Elmondása szerint, ha egy fröccsöntéssel előállítható alkatrészekből egymillió darabot kérnek, akkor jelenleg még jobban megéri a hagyományos technológiát használni, amely a fröccsöntő szerszámkészítés és az azzal való gyártás, de ha csak ezer darabra van szüksége a vállalatnak, akkor egyértelműen az alkatrészek, termékek 3D nyomtatása a kifizetődőbb. Ezt felismerve már több mint 150 magyarországi cég vásárolt a Varinex-től 3D nyomtatókat. Globálisan megfigyelhető trend, hogy főként a pótalkatrész-gyártásban kapott nagyobb szerepet ez a technológia, mivel nagy költségeket lehet vele megspórolni: nem áll a tőke a alkatrészben, és nem kell raktározni sem, ha akkor nyomtatják ki, amikor szükség van rá.
A Varinex Zrt. 22 éve foglalkozik 3D nyomtatással, csak néhány évvel ezelőttig gyors prototípusgyártásnak nevezték. A cég igazgatótanácsának elnöke elmondása szerint, még ma is találkoznak kétkedőkkel, akik idegenkednek a nyomtatott alkatrészektől.
Ma már a legszigorúbb iparágban, a repülőgép-gyártásban is használnak nyomtatott fém alkatrészeket, ha ott elfogadott, akkor arra bátran alapozhat minden ágazat
– emelte ki Falk György. Hozzátette, nincsenek adatok arról, hogy hány hazai vállalat használja a technológiát, sokan azért nem árulják el mit nyomtatnak, mert azzal a konkurenciának is versenyelőnyt jelenthetne. A világpiacon viszont már a vállalatok 23 százaléka használja a technológiát. A gyártó vállalatok esetében azonban észrevehető, hogy egyre többen veszik igénybe ezt a nyomtatást, mivel a Varinex nemcsak forgalmazó, hanem 3D nyomtatási szolgáltatást is nyújt, gyakran kapnak megrendeléseket 3-5 ezer darabszámos megrendelésekre.
Egy professzionális ipari 3D nyomtató ára 5 és 500 millió forint között mozog, a magyar piacon csak két nagy forgalmazó van, illetve egyre többen foglalkoznak a hobbi 3D nyomtatókkal.
Utóbbi annak köszönhető, hogy néhány éve lejártak a 3D nyomtatáshoz kapcsolódó szabadalmak, és kialakult egy hobbinyomtató világ, ahol már kimondottan olcsón lehet nyomtatókhoz jutni, ezek azonban ipari termékek esetében nem tudják az elvárt minőséget hozni.
Sajtóközlemény: a cseh CAD Studio viszi tovább Magyarország legnagyobb arany fokozatú Autodesk-partnerének tevékenységét
A CAD Studio újabb állomáshoz érkezett a felvásárlások sorában: Magyarország legnagyobb Arany fokozatú Autodesk-partnere, a VARINEX CAD- és GIS-szolgáltatásainak átvételével bővíti nemzetközi tevékenységét.
Prága/Budapest, 2020. január 2. – A CAD Studio Ltd., a CAD-, CAM-, GIS- és BIM-megoldások vezető közép-európai szállítója a Varinex-CAD Studio, a legnagyobb magyar Autodesk-partner 100%-os tulajdonosává válik, és tovább erősíti pozícióját: a CAD Studio az Autodesk legjelentősebb partnere a régióban, összesen 120 alkalmazott 9 csehországi, szlovákiai és magyarországi telephelyen nyújt szolgáltatásokat ügyfeleinek.
A CAD Studio és a VARINEX megállapodást kötött a közös jövőről, amelynek keretében a CAD Studio S.r.o. egy új vállalat, a Varinex-CAD Studio Kft. 100%-os tulajdonosává válik. A Varinex-CAD Studio Kft. alapítója a VARINEX Zrt., a CAD- és BIM-megoldások szállítója, aki az Autodesk technológiáira épülő CityScape megoldásaival a víziközmű-, távhő-, önkormányzati- és telco ágazatokban vezető szerepet tölt be a műszaki térinformatikai és e-közmű megoldások területén. A legfontosabb ügyfelei közé tartozik a MÁV Zrt., a Magyar Telekom Nyrt.
A két vállalat együttes éves forgalma 18,8 millió euró (6,2 milliárd forint). A VARINEX és ügyfelei ennek a lépésnek köszönhetően hozzáférhetnek a CAD Studio szerteágazó, komplex megoldásokat felölelő szakértelméhez a termékadat-kezelés (PDM/PLM), CAM-megoldások, építőipari BIM-technológiák, GIS/létesítménykezelés, valamint média és ipariforma-tervezés területén. Emellett kihasználhatják az összes terméktámogatási eszközt, bővítményt és a CAD Studio szoftverfejlesztési kapacitását.
A CAD Studio ezzel jelentős regionális bővülés elé néz: Szlovákia után a tapasztalt VARINEX-csapatra építve egy újabb országban kezdi meg tevékenységét. A CAD Studio azonban más országokban, például Hollandiában, az Egyesült Államokban, Kínában és Szolvéniában is rendelkezik ügyfelekkel.
A Varinex-CAD Studio Magyarországon működik majd Voloncs György, a jelenlegi Varinex ügyvezető irányítása alatt.
„Saját erős növekedésünknek (+53% a pénzügyi év utolsó 8 hónapjában) és a jól teljesítő Aricoma Csoport által biztosított háttérnek köszönhetően a CAD Studio új piacok felé bővülhet. PDM- és BIM-megoldásainkat – például a CAD/PDM/ERP közötti zökkenőmentes kapcsolatot biztosító ERP Connectort vagy a gyors és megfizethető twiGIS GIS-alkalmazást a magyar ügyfelek számára is elérhetővé szeretnénk tenni. Az általunk kínált know-how és a magyar helpdeskünk műszaki támogatási szolgáltatásainak széles köre komoly előnyt jelent” – mondja Jan Binter, a CAD Studio vezetője.
„Mindkét vállalat 1990 óta működik a piacon. A felvásárlásnak köszönhetően a tervezés és gyártás új területeit fedhetjük le, kihasználhatjuk a bevált CAD-, BIM- és GIS-bővítményeket és a széles műszaki hátteret, így jobb szolgáltatást nyújthatunk ügyfeleinknek” – tette hozzá Voloncs György, a Varinex-CAD Studio vezetője.
A CAD Studio s.r.o. 28 évnyi tapasztalattal rendelkezik a CAD-, CAM-, BIM-, PDM- és GIS-megoldások terén Közép-Európában. A vállalat portfóliója teljes mértékben lefedi a tervezés és gyártás, kivitelezés és építészet, geodézia és térképezés, látványtervezés és animáció, valamint a térinformatika, létesítménykezelés és infrastruktúra-kezelés szakmai területeit. A CAD Studio átfogó szolgáltatásokat és implementációt, egyedi szoftverfejlesztést és szakértő műszaki támogatást is kínál ügyfeleinek.
A CAD Studio az AutoCont holding és az Aricoma Csoport tagjaként az Autodesk vezető partnere a Cseh Köztársaságban és Szlovákiában, és számos tanúsítvánnyal rendelkezik.
A Varinex-CAD Studio Kft. a VARINEX CAD és GIS üzletágának jogutódjaként 1990 óta működik Magyarországon a CAD-, PDM-, BIM- és GIS-megoldások szállítójaként. A Varinex-CAD Studio számos CAD- és GIS-szolgáltatást is kínál, többek között implementációt, szoftverfejlesztést és CAD-képzéseket. A Varinex-CAD Studio a legnagyobb Autodesk-partner Magyarországon.
A VARINEX Zrt. 3D nyomtatási üzletága a magyarországi 3D nyomtatási piacra fókuszál, és az eredeti vállalat, a VARINEX Zrt. keretében működik tovább.
Az autóipari gyártási folyamatok leegyszerűsítése additív gyártással
A minőség és a gyártási teljesítmény ma kulcskérdés az autóipari termelésben. Számos újdonság jelenik meg, például az önvezető járművek és az intelligens autók, így nagy a nyomás a gyártókon és beszállítókon, hogy új gyártási technológiákra és szaktudásra támaszkodjanak a hatékony tervezés, költségkezelés és munkavégzés biztosítása érdekében. Cikkünk az autóipari befogó készülékek és ülékek 3D nyomtatásának előnyeit tárgyalja a hagyományos gyártási módszerekkel szemben, valamint ideális alkalmazási lehetőségeit a gyártósorokon.
A befogó készülékek és ülékek additív gyártással történő előállításának előnyei
A gyártók hagyományosan CNC-megmunkálású vagy fröccsöntött befogó készülékekkel és ülékekkel dolgoznak, amelyeknek az elkészítése idő- és munkaigényes, megtérülésük előre nem garantálható. Az additív gyártással rövidebb idő alatt készíthetők új alkatrészek mérnöki minőségű alapanyagokból, CNC megmunkálás nélkül, így jelentős mértékű költségmegtakarítás érhető el az eszközök előállítása során.
A befogó készülékek és ülékek 3D nyomtatása a következő fő előnyökkel jár:
gyors piacra vitel: 3D nyomtatással gyorsabban és igény szerint állíthat elő befogó készülékeket és ülékeket. Az átfutási idő 70–90%-kal kevesebb a hagyományos gyártáshoz képest.
tervezési szabadság: a 3D nyomtatás az alapoktól, rétegenként építi fel az alkatrészeket, ami eltörli a gyártási szempontokat figyelembe vevő tervezés hagyományos korlátait, és számos új lehetőséget nyit a szerszámok konfigurálása terén. Amikor a mérnökök additív gyártásra terveznek, a furatok, kontúrok és összetett organikus szerkezetek többé nem jelentenek akadályt.
részegységek összevonása: az additív gyártásra jellemző tervezési szabadságnak köszönhetően azokat a segédeszközöket, amelyek korábban saját összeállítási időt igénylő részegységekből álltak össze, újra gyárthatók, hogy egyetlen alkatrészből valósuljanak meg, csökkentve ezzel a fenntartási költséget.
ergonómia: Az alkatrészek új irányelvek mentén történő tervezése azt is lehetővé teszi, hogy növelje a dolgozók kényelmét és az előállított segédeszközök ergonómiáját. Tervezés közben előtérbe helyezheti a funkciókat a gyárthatósági szempontokkal szemben. Ez nem jár további költségekkel, nem növeli meg a gyártási időt, de fokozza a segédeszközöket használó alkalmazottak biztonságát és kényelmét.
tömegcsökkentés: a gyártósoron dolgozó alkalmazottak kényelmét és biztonságát növelő másik előny a segédeszközök tömegének csökkentése. A 3D nyomtatás lehetővé teszi az erős, magas minőségű alapanyagok használatát, miközben az alkatrészek funkcionalitása nem csökken a fémből készült változatokkal szemben.
digitális készletezés: a 3D nyomtatók közvetlenül CAD-adatokból dolgoznak, így az új tervek gyorsan készíthetők el, és a meglévők könnyedén módosíthatók. Ha például változik a végső alkatrész mérete, és ezért új befogó készülékre van szükség, csak frissíteni kell a befogót megjelenítő CAD modell-t, meg kell rendelni az additív gyártással elkészített alkatrészt, és az új befogó készülék néhány napon belül már a gyártósoron lehet.
Additív gyártás az autóipari gyártósoron Bár a „befogó készülékek” és az „ülékek” kifejezést gyakran használjuk együtt, egyértelmű különbségek vannak közöttük, és az alkalmazási területük is különböző. A befogó készülékek olyan testre szabott eszközök, amelyek egy művelet során egy alkatrész helyét és mozgását irányítják és felügyelik. Ezek gondoskodnak az ismételhetőségről és a pontosságról a termékek gyártása során. Ezzel szemben az ülékek olyan eszközök, amelyek egy alkatrészt egy rögzített helyzetben tartanak egy megmunkálási művelet vagy más ipari folyamat közben. Az ülékek gondoskodnak a változatlan minőségről, csökkentik a termelési költségeket, és lehetővé teszik, hogy a különböző alkatrészek a vonatkozó specifikációknak megfelelően készüljenek el.
Az összeszereléstől a minőségbiztosításon át a logisztikáig a „befogó készülékek és ülékek” teszik zökkenőmentessé az autóipari alkatrészek gyártási folyamatát. Néhány példa a befogó készülékek és ülékek 3D nyomtatásának autóiparon belüli alkalmazási területeire:
gyártás és összeszerelés: 3D nyomtatással készült eszközök a gyártási folyamat ezen lépésénél leggyakrabban arra szolgálnak, hogy irányítsák és megtartsák az eszközök és sínek pozícióját az alkatrészek marásakor és fúrásakor.
biztonság: gyakran a munkásokra marad az alkatrészek és berendezések biztonságának ellenőrzése, ezért fontos, hogy a befogó készülékek és ülékek a könnyebb használat érdekében könnyűek és ergonomikusak legyenek.
minőségbiztosítás és vizsgálat: 3D nyomtatás segítségével precíz, testre szabott eszközöket lehet készíteni, amelyek megfelelnek a minőségbiztosítással foglalkozó részlegek rögzítő és vizsgálóeszközökkel szemben támasztott szigorú elvárásainak. Az additív gyártáshoz kifejlesztett, hőre lágyuló, strapabíró műanyagok a végső vizsgálathoz is képesek sérülést nem okozó felületet biztosítani.
csomagolás és logisztika: a leggyakoribb alkalmazási terület, amellyel találkozhatunk a gyáron belüli szállítást elősegítő, testre szabott befogó készülékek előállítása. Az additív gyártás hőre lágyuló műanyagai strapabírók és hőállók és képesek ellenállni a szállítás során jelentkező terheléseknek, például a rezgéseknek, a nyomásnak és a nedvesség hatásának.
Az autóipar izgalmas és forradalmi időket él meg. Azok a gyártók jutnak versenyelőnyhöz, akik képesek a gépjárművek tervezésén túlmutató innovációkra, és készek arra, hogy átalakítsák a tervezési és gyártási folyamatok minden területét. Az additív gyártással létrehozott befogó készülékek és ülékek kulcsszerepet játszanak ebben a folyamatban, mivel hatékonyabbá teszik a munkavégzést, segítik a hibák kiküszöbölését, és lerövidítik a felülvizsgálathoz szükséges átfutási időket.
A 3D nyomtatás évek óta nélkülözhetetlen a gépjárművek prototípusának fejlesztési folyamatában, egyedi vagy testreszabott alkatrészek gyártásában.
3D nyomtatás és profitorientált megközelítés szakértőinktől!
A VARINEX Zrt. 3D nyomtatás üzletága több, mint 25 éves tapasztalattal rendelkezik a 3D nyomtatás szolgáltatás, vagyis a bérnyomtatás területén. Az FDM és a PolyJet technológiákat napi szinten használó mérnök kollégák a legmagasabb színvonalon tudják teljesíteni az ügyfelek megrendeléseit. Az évi több tízezer különféle alkatrész bérnyomtatása során szerzett tapasztalat biztosítja az FDM és a PolyJet technológia közötti megfelelő választást az adott alkalmazási területen.
Projektindítás előtt lépjen kapcsolatba szakértő mérnök kollégáinkkal a 3dp@varinex.hu email címen!
Töltse le magyar nyelvű kiadványunkat adatlapunk kitöltésével!
A VARINEX Zrt. 3D nyomtatás üzletága több évtizedes 3D nyomtatási tapasztalattal rendelkezik, és tudja, hogyan használható a 3D nyomtatási technológia az adott alkalmazási területen. Projektindítás előtt lépjen kapcsolatba szakértő mérnök kollégánkkal. Kérdése van az FDM vagy a PolyJet technológiával kapcsolatban? Szívesen válaszolunk.
Ismerje meg azon 5 kulcsfontosságú területet, ahol az innovatív 3D nyomtatás a tervezéstől a gyártásig átalakítja az autóipart!
Kéz a kézben: additív gyártás és a digitális folyamat
A gyártók folyamatosan új módszereket keresnek tervezési feladataik optimalizálására, valamint arra, hogy egyszerűbbé, rugalmasabbá és agilisebbé válva lépést tarthassanak az ügyfelek testreszabási igényeivel. Ez kiterjed az olyan gyártási eszközökbe és gépekbe való befektetésekre, amelyek a vállalatok igényeinek megfelelően lettek kialakítva, és hozzájárulnak a szélesebb körű stratégiai célok eléréséhez.
A haladó gondolkodású gyártók előzetesen felkészülnek erre a trendre, és nyitnak a fejlődő technológiák felé – az egyik legfontosabb testreszabási lehetőséget pedig az additív gyártás és a digitális folyamat kombinálása jelenti.
A 3D nyomtatásnak is nevezett additív gyártás a fizikai tárgyak rétegenként történő előállítását jelenti. Az új alkatrészek és termékek létrehozása hagyományosan időigényes és költséges folyamat, a gyártórendszerek (gyártó- és szerelősorok) újra konfigurálásának szükségessége miatt. Az üzembehelyezési és átállási időhöz kapcsolódó költség pénzügyi hátrányt jelent, különösen az egyedi termékek esetében. Mindez nem fordulhat elő a testre szabott termékek mai, gyors ütemben fejlődő világában – az additív gyártás megoldást kínál erre a problémára.
A legelterjedtebb additív gyártási technológiák közül az FDM és a PolyJet gyártási technológia alkalmas alkatrészek, prototípusok gyors és költséghatékony előállítására. A PolyJet technológia a részletgazdagságáról ismert, az FDM technológia a tartós, végfelhasználásra kész alkatrészek gyártására helyezi a hangsúlyt. Ha az alkatrész esetében kulcsfontosságú a mechanikai szilárdság és tartósság, az FDM a legjobb választás.
A digitális folyamat kulcsfontosságú az additív gyártás ütemezése szempontjából
Az additív gyártás lehetővé teszi az új prototípusok, alkatrészek és termékek gyors előállítását, a gyártóberendezések nagy léptékű átállítása nélkül. A költségmegtakarítás jelentős lehet még az egyedi termékek esetében is – gondoljunk például egy gép meghibásodására, amikor egy helyszíni 3D nyomtatóval legyártható egy pótalkatrész. A bennük rejlő potenciál teljes kihasználásához érdemes összekapcsolni az additív gyártást és a digitális folyamatot. A fenti példában az IoT (dolgok internete) és az elemzés révén előzetesen felkészülhetünk a berendezés karbantartására, és proaktív intézkedéseket tehetünk. Ha a digitális raktárkészletből a szükséges pótalkatrész virtuális modelljét betápláljuk a 3D nyomtatóba, rövid idő alatt legyárthatjuk a cserealkatrészt, és elkerülhetjük a költséges leállásokat.
Az IoT kulcsfontosságú teljesítményadatokkal is képes szolgálni, amelyekkel zárt hurkú visszacsatolás hozható létre a terméktervezők számára. A valós termékhasználati adatokat a következő termékváltozatot elkészíteni szándékozó tervezők elérhetik a digitális folyamaton keresztül.
A generatív tervezés és a digitális folyamat
A mesterséges intelligencia (MI) átalakítja az iparágakat, a vállalatokat, és az azokban megjelenő szerepköröket is. A terméktervezési és mérnöki szerepkörökben dolgozókat MI-alapú generatív tervezőeszközökkel látják el, hogy kisebb tömegű, hatékonyabb jövőbeli termékváltozatokat hozhassanak létre.
Melyek az additív gyártásra való tervezés technikái?
Az alkalmazandó tervezési technika/technikák kiválasztásakor nagyon fontos átgondolni, hogy hogyan fogják használni az alkatrészt és milyen szerepet fog betölteni. A topológiaoptimalizálás és a generatív tervezés valójában gyakran kapcsolatban áll egymással. A generatív tervezés végső célja egy olyan terv megalkotása, amely jobban, gyorsabban és tömegcsökkentés mellett képes megfelelni a teljesítménykövetelményeknek, számítási módszerek és a meglévő erőforrások használatával. A topológiaoptimalizálás nem más, mint egy bevált generatív tervezési módszer, amely az anyageloszlás optimalizálására fókuszál, megbízható numerikus módszerek használatával. A topológiaoptimalizálással kapott optimalizált alakokat sok esetben nem lehet hagyományos eljárásokkal legyártani.
Minden gyártási folyamatnak megvan a maga tervezési technikája: a gépi megmunkálásra váró darabokat máshogyan tervezzük, mint a 3D nyomtatással előállított elemeket. Az additív gyártás egyedi tervezési szabályokkal és eszközökkel dolgozik, amelyekkel optimalizált, 3D nyomtatásra kész terveket lehet létrehozni. Ezeket a tervezési megoldásokat azzal a céllal fejlesztettek ki, hogy a lehető legnagyobb mértékben optimalizálja az alkatrész költségét, megbízhatóságát és más, a termék életciklusára vonatkozó szempontokat.
Az additív gyártás rétegenkénti anyagnyomtatással kelti életre ezeket az innovatív, generatív terveket. Az ilyen optimalizált terméktervekkel jelentősen csökkenthető a hulladéktermelés, a felhasznált anyagok mennyisége és a termékek tömege, ami nagy jelentőséggel bír a termékelőállítási költségeire és a gyakorlati teljesítményre nézve.
Az additív gyártás és a generatív tervezés kombinálásával a prototípuskészítés általános költségei is jelentősen csökkenthetők. Helyszíni 3D nyomtató használatával a terméktervezők gyorsan legyárthatnak egy-egy generatív tervezéssel optimalizált prototípust. A gyors prototípuskészítés hatással van a folyamat későbbi lépéseire is. Lehetővé teszi, hogy a gyártók minden korábbinál gyorsabban piacra vihessék a termékeiket, és megfelelhessenek az egyre rövidülő átfutási idők követelményeinek.
A gyártóknak additív gyártási stratégiára lesz szükségük, hogy lépést tarthassanak a tömeges testreszabási trendekkel és a versenyhelyzet kihívásaival. A digitális tervezési folyamattal kombinált additív gyártás lehetőséget biztosít az innovatív technológiák elterjedésére, és képes megkönnyíteni a különféle szerepkörök együttműködését. Az additív gyártás fizikai tekintetben forradalmasítja a gyártósorokat, míg a digitális folyamat képes lesz az összes műveletre vonatkozóan kiterjeszteni annak széleskörű hatását.
FDM és PolyJet technológia a 3D nyomtatás úttörőitől
Az FDM technológiát feltaláló család tagjának lenni azt jelenti, hogy a Stratasys kutatás-fejlesztés iránti erős elkötelezettség támogat minket. A VARINEX Zrt. 25 éves tapasztalattal rendelkezik a 3D nyomtatás szolgáltatás, vagyis a bérnyomtatás területén. Az FDM és a PolyJet technológiákat napi szinten használó mérnök kollégák a legmagasabb színvonalon tudják teljesíteni az ügyfelek megrendeléseit. Az évi több tízezer különféle alkatrész bérnyomtatása során szerzett tapasztalat biztosítja az FDM és a PolyJet technológia közötti megfelelő választást az adott alkalmazási területen.
Projektindítás előtt lépjen kapcsolatba a szakértő mérnök kollégákkal a 3dp@varinex.hu email címen!
Útmutatónk a Fused Deposition Modeling (FDM) technológiával készült alkatrészek tervezése és előkészítése során figyelembe veendő alapvető szempontokat ismerteti. Az FDM technológiával nyomtatandó alkatrészek tervezése során a nyomtatási eljárás sajátosságait is figyelembe kell venni.
FDM-alkatrészek tervezése
Az FDM eljárás hőre lágyuló műanyagot épít rétegről-rétegre. Mivel az FDM eljárással létrehozható termékek és alkatrészek köre az alapanyag és a speciális egyedi tulajdonságok terén is sokkal szélesebb, mint más prototípus és kis szériás gyártási eljárásoknál, ezért egyre szélesebb körben alkalmazzák közvetlenül a felhasználóhoz kerülő termékek gyártására, ezt nevezzük közvetlen digitális gyártásnak (Direct Digital Manufacturing).
Méret és tájolás
A Stratasys FDM gyártórendszereivel egy darabban akár 914x610x914 mm méretű különálló FDM-alkatrészeket is létre tudunk hozni. A tervezőknek figyelembe kell venniük, hogy az extrudált műanyagok szakítószilárdsága az x-y sík mentén a legnagyobb.
Mivel a Stratasys FDM-rendszer zárt, fűtött munkatérben állítja elő a modelleket, ezért a vetemedés általában nem jelent problémát. Az alámetszések esetében szükséges alátámasztás a modellanyagtól függően oldható vagy törhető, könnyen elválasztható támaszanyaggal történik.
Tervezési szempontok FDM-nyomtatáshoz
A hagyományos műanyag alkatrészek tervezése alapján mutatjuk be a minőségi FDM-alkatrészekre vonatkozó tervezési szempontokat a letölthető dokumentumban.
Töltse le tervezési útmutatónkat, amelyből megismerheti az FDM technológiai eljárásra vonatkozó tervezési szempontokat!
A VARINEX Zrt. 3D nyomtatás üzletága több, mint 20 éve szolgáltat 3D nyomtatást és kínál profitorientált megközelítést. Projektindítás előtt lépjen kapcsolatba szakértő mérnök kollégánkkal a 3dp@varinex.hu email címen.
Tervezési szempontok az FDM technológiával történő gyártáshoz kiadvány letöltése
Stratasys j850 – a tervezés új szintre emelése 3d nyomtatással
Tervezés korlátok nélkül
A briliáns tervek megszületésének semmi ne szabjon határt! A Stratasys J850 3D nyomtató segít a tervezési kihívások kreatívabb, gyorsabb és költséghatékonyabb megoldásában.
Profitálna vállalata abból, ha rövidebb lenne a termékfejlesztési ciklus, és a hatékony kommunikációnak köszönhetően jobb tervek születnének? A műtéti tervezéshez vagy az orvosi eszközök teszteléséhez hasznára válnának pontos anatómiai modellek?
Előnye származna felsőoktatási intézményének abból, ha felkelthetné a legígéretesebb hallgatók és az élvonalba tartozó kutatók érdeklődését a legmodernebb, többféle anyaggal történő 3D nyomtató használatával?
Ha e kérdések bármelyikére is igen a válasza, akkor a Stratasys J850 3D nyomtató segíthet Önnek céljai elérésében.
Tudjon meg többet arról, hogy a Stratasys J850 3D nyomtató milyen hatással van a tervezési valósághűségre gyakorlatilag bármilyen ipar- és tudományágban! Töltse le kiadványunkat!
Tudjon meg többet arról, hogy a Stratasys J850 3D nyomtató milyen hatással van a tervezési valósághűségre gyakorlatilag bármilyen ipar- és tudományágban!
A STRATASYS J850 3D nyomtató és a Pantone együttműködése
Magas színhűséggel keltheti életre ötleteit az első olyan 3D nyomtatóval, amelynek része a Pantone® színegyeztetési rendszere. A J850 nyomtató Pantone Validated™ minősítéssel rendelkezik. Felgyorsíthatja a munkafolyamatot, kísérletezhet a színekkel, és valósághűbb prototípusokat készíthet. Iratkozzon fel, ha többet szeretne megtudni arról, hogy a Pantone és a Stratasys hogyan szerezte meg ezt a műszaki minősítést, és hogy ennek milyen pozitív hatásai lehetnek a tervezési folyamatra és az Ön üzleti tevékenységére.
5 érv a Stratasys PolyJet technológiája mellett a prototípuskészítésben
A PolyJet technológia a valósághű és esztétikus termékek 3D nyomtatását teszi lehetővé. A technológia a hagyományos tintasugaras nyomtatáshoz hasonlóan működik, de papír és festék felhasználása helyett a nyomtatófej folyékony, fényérzékeny fotopolimer cseppeket juttat egy nyomtatótálcára, ahol minden réteget ultraibolya (UV) fény szilárdít meg
A valósághűség egészen új szintjén élvezheti tervei megvalósulását. Fedezze fel, hogyan hozhat még jobb tervezési döntéseket azáltal, hogy legkreatívabb ötleteit 3D nyomtatással kelti életre!
Egy igazán hatásos megoldás
A világ legfejlettebb 3D nyomtatója nyújtotta határtalan alkotói szabadság révén nagy eséllyel sikerre viheti ötleteit. A valódi színű, többanyagos lehetőségekkel olyan összetett textúrákat is nyomtathat, mint a szövet, a bőr, a kő vagy a fa. Mindezt egyetlen menetben. A változtatható szintű keménység, illetve a hajszálpontos és részletgazdag kivitelezés határtalan kreatív lehetőségeket biztosít.
A tökéletességre törekvés szabadsága
A piacvezető ötletek formába öntése egyszerűbb és gyorsabb, mint valaha. A Stratasys J850 3D nyomtatók a piacon elérhető legtöbb nyomtatóhoz képest kétszer akkora anyagkapacitást, négyszer annyi befecskendezőt és kétszer akkora sebességet kínálnak. Egyetlen termékfejlesztési ciklusban többször is megvizsgálhatja, kipróbálhatja és bemutathatja elképzeléseit, ráadásul páratlanul valósághű módon. A 3D nyomtatással a végleges formáig tökéletesítheti a modellt, így könnyebben meggyőzheti az ügyfeleket, és jobb minőségű végterméket hozhat létre.
Tervezés valósághű színekkel
Az egyetlen olyan 3D nyomtatóval, amelynek része a PANTONE® színegyeztetési rendszere, magas színhűséggel keltheti életre ötleteit. A Stratasys J850 3D nyomtatók PANTONE Validated™ minősítésűek, és integrált GrabCAD Print szoftverrel rendelkeznek, így egyetlen kattintással hozzárendelheti a megfelelő Pantone-színárnyalatot a prototípushoz. Felgyorsíthatja a munkafolyamatot, kísérletezhet a színekkel, a végső prototípus pedig sokkal valósághűbb lesz. A tervezés során azzal a magabiztossággal dolgozhat, hogy a prototípusok biztosan az eredetileg elképzelt színben fognak elkészülni.
A 3D nyomtatás ötször több kísérletezési lehetőséget biztosít a tervezés során. Annyi idő alatt, ameddig egyetlen prototípus elkészítése tart a hagyományos módszerekkel.
A VARINEX Zrt. 3D nyomtatás üzletága több évtizedes 3D nyomtatási tapasztalattal rendelkezik, és tudja, hogyan használható az FDM és a PolyJet technológia az adott alkalmazási területen. Projektindítás előtt lépjen kapcsolatba szakértő mérnök kollégánkkal. Kérdése van? Szívesen válaszolunk.
Nagy szilárdságú kompozitok és hőre lágyuló alapanyagok
A Stratasys kompozit alapanyagokkal a nagy szilárdságú és megbízható végfelhasználói alkatrészek készítése sokkal egyszerűbbé vált. Használjon Stratasys alapanyagot 3D nyomtatási technológiájához, ha gyorsan szeretné kifejleszteni és megvalósítani terveit, hogy az alkatrészei a legnagyobb terhelés mellett is a lehető legjobb teljesítményt nyújtsák, minden alkalommal!
Szénszál
Szénszálas kompozit 3D nyomtatási alapanyag-, a szénszálas Nylon12 képes biztosítani a merev szerszámokhoz, prototípusokhoz és gyártási alkatrészekhez szükséges tartósságot és merevséget. Tartósságának és merevségének köszönhetően ez az alapanyag a könnyebb alkatrészek és szerszámok esetében kiválóan helyettesítheti az alumíniumot. A szénszálas Nylon12 alapanyaggal rendkívül erős és merev alkatrészeket készíthet.
Vegyi anyagok és magas hőmérsékletnek ellenálló alapanyag
A vegyi anyagoknak és magas hőmérsékletnek ellenálló, illetve gáztalanítási tulajdonságai révén az Antero 800NA ötvözi az FDM tervezési szabadságát a PEKK nagyfokú szilárdságával és méretstabilitásával, ami alkalmassá teszi a repülőgép- és űripari felhasználásra. A PEKK-alapú Antero 800NA anyag remek vegyi ellenállóképességet biztosít.
Magas szakítószilárdság – nagy teljesítményű, hőre lágyuló alapanyag
A legerősebb, hőre lágyuló FDM-alapanyag, az ULTEM™ 1010 resin a magas szakítószilárdságot kiváló hőtani tulajdonságokkal ötvözi, így megfelelő választás a magas hőmérsékleten történő hasznosításhoz, például a nehéz kompozit szerszámok autokláv-kompatibilis, könnyű alternatívákra történő lecserélése vagy a hősterilizálásnak ellenálló orvostechnikai eszközök készítése terén. Az ULTEM™ 1010 resin használatával sokkal gyorsabban készíthetők el a kisebb tömegű rétegzett kompozit eszközök.
A magas szilárdság–tömeg arány és FST- (lángra, füstre, toxicitásra vonatkozó) minősítése révén az ULTEM™ 9085 resin remek megoldás a tömeg csökkentését célzó felhasználásra a repülőgép- és autóiparban. Az ULTEM™ 9085 CG resin alapanyag szállítása a repülőgépipar követelményeinek megfelelően teljes mértékben nyomon követhető. A nagy szilárdságú ULTEM™ 9085 resin műanyag alkatrészek, például a képen látható repülőgépekben használható cső, lehetővé teszik a repülőgépipari vállalatok számára a súly csökkentését.
A VARINEX Zrt. szolgáltatásai mögött nem csupán az iparágvezető Stratasys áll – a több, mint 20 éves 3D nyomtatási tapasztalat mellett egy fáradhatatlan mérnökcsapattal is rendelkezünk, amely bármely projektszakaszban segítséget nyújt Önnek. Projektindítás előtt vegye fel velünk a kapcsolatot!
Az ötletek kivitelezését a prototípustól a gyártásig már nem kötik a hagyományos gyártási módszerek korlátai. Segítünk Önnek megváltoztatni a gyártási status quót!
Miért válassza az additív gyártást vállalkozása számára?
Napjainkban már nem csak a hagyományos gyártási módszerek érhetők el a termékek piaci bevezetéséhez. Elérkezett a szemléletváltás ideje a gyártással kapcsolatban. Az Ipar 4.0 korában az additív gyártás új távlatokat nyit meg:
akár napokkal is lerövidítheti a gyártási ciklusokat,
Erősebb alkatrészek szénszállal és más jövőbe mutató alapanyagokkal
Ismerje meg az új additív gyártási alapanyagokat! Az alapanyagok által biztosított megbízhatóság és tervezési szabadság révén valóra válthatja elképzeléseit!
Videónkból ismerje meg, hogy a Team Penske vállalat hogyan gyorsította fel a versenykész alkatrészek gyártását szénszállal és 3D nyomtatással!
Nem egyszerűen csak egy újabb alkatrészt vagy szerszámot szeretne készíteni, hanem valami olyasmit, ami minden korábbi elképzelést felülmúl? Ha az üzleti érdekek úgy kívánják, hogy a kész termék nagyobb szilárdságú, költséghatékonyabb és könnyebben előállítható legyen, a 3D nyomtatás a fejlett alapanyagok révén a legnagyobb kihívásokkal is képes megbirkózni. Tudjon meg még többet a páratlan szilárdságú kompozitok és hőre lágyuló alapanyagokról!
Hozzon létre professzionális, hiperrealisztikus prototípusokat!
Kiemelkedően pontos, egészen az utolsó voxelig beállítható, akár 500 000 valódi színt használó prototípusokat állíthat elő. A valódi alkatrészekre a legapróbb részletekig hasonlító prototípusokat hozhat létre, mint amilyen például ez az autóipari fényszóróbúra.
Készítsen a legnagyobb igénybevételű gyártási igényeknek is megfelelő, ipari szilárdságú alkatrészeket!
Akár egyszerű befogó készülékeket vagy karvégi megfogókat készít, akár a teljes üzemet szereli fel a termelés növelésével párhuzamosan, nem engedheti meg magának, hogy az ipari szilárdságúnál gyengébb additív technológiát használjon az igényei kielégítéséhez. A Stratasys F450 3D nyomtató és az új Antero PEKK-alapú alapanyag használatával nagy szilárdságú és kiváló méretstabilitású alkatrészeket készíthet.A Stratasys magyarországi partnereként a professzionális szolgáltatásokért felelős csapatunk segít feltárni annak lehetőségeit, hogy a 3D nyomtatással készült alkatrészek alkalmazásával hogyan optimalizálhatja cége működését. Ajánlatkérésért keresse kollégáinkat!
Teljesítmény minden szinten – befogó készülékek és ülékek egyszerűen
Alacsonyabb gyártási költségek mellett készíthet befogó készülékeket és ülékeket. Könnyebb beállítóeszközök, merev tartóeszközök, ergonomikus markolatok – tetszőleges számú testreszabott 3D szerszámot készíthet, ráadásul költséghatékonyabban, mintha megmunkált szerszámokat gyártana. Az eredmény? Hatékonyabb szerszámkészítés, rövidebb átfutási idők és magasabb termelékenység.
Csökkenő költségek, növekvő nyereségesség
A CNC-megmunkáláshoz képest a 3D nyomtatással készült befogó készülékek és ülékek negyedannyi idő alatt, kisebb anyagveszteséggel készülnek el, a költségeket pedig nem növeli az összetettség. A gyártási folyamatnak ráadásul szinte semmi munkaigénye nincs. Mindez lehetővé teszi, hogy szabadjára engedje kreativitását, és a terveket gyors módosításokkal tesztelhesse. Az eredmény nagyobb termelékenység és a termékek gyorsabb piaci bevezetése.
A fejlesztési ciklust hónapokról hetekre rövidítheti. A 3D nyomtatással készült befogó készülékek és ülékek rugalmassága lehetővé teszi saját készítésű gyártási segédeszközök, például ipari felhasználású anyagokból készült könnyűsúlyú beállítóeszközök és merev tartóeszközök nyomtatását. Gyorsabban, hatékonyabban és nyereségesebben végezheti munkáját.
Nagy szilárdságú és könnyű befogó készülékeket és ülékeket állíthat elő. A tervezés során a jobb ergonómia és a nagyobb biztonság szem előtt tartásával minden eszközt a munkára és a kezelőre szabhat. Tökéletesen illeszkedik a gyártási környezethez.
A 3D nyomtatás csökkentette a befogó készülékek és ülékek gyártási költségeit. A prototípusok nyomtatása és a GrabCAD Print-integráció felgyorsította a tervezési ciklusokat. Az ellenálló anyagok terén elért fejlődésnek köszönhetően olyan szerelési készülékeket nyomtathat, amelyek megfelelnek a szigorú gyártási követelményeknek. A 3D nyomtatás a korábban lehetetlen feladatok elvégzését is lehetővé teszi.
A VARINEX Zrt. 3D nyomtatás üzletága több évtizedes 3D nyomtatási tapasztalattal rendelkezik, és tudja, hogyan használható a technológia az adott alkalmazási területen. Projektindítás előtt lépjen kapcsolatba szakértő mérnök kollégánkkal. Kérdése van? Szívesen válaszolunk.
Az FDM és a PolyJet: a professzionális 3D nyomtatási technológiák
Választások és döntések. Az életben folyamatosan azt tapasztaljuk, hogy választanunk kell a lehetséges megoldások között. Nincs ez másképp a 3D nyomtatás világában sem. Mind a Fused Deposition Modeling (FDM) és PolyJet technológia is rendelkezik egyedi jellemzőkkel és különleges előnyökkel.
Honnan tudhatja, hogy alkatrészeihez Önnek melyik a megfelelő technológia? A lehetőségek jobb megértéséhez fontos ismerni a folyamatok menetét.
Az FDM hőre lágyuló polimer alapanyagot használ, amelyet a gép megolvaszt, és az olvadékot folyamatosan, precízen helyezi el, ezt nevezzük extrudálásnak. Az extrudálás után az anyag azonnal megszilárdul.
A PolyJet-folyamat hasonlít a hagyományos tintasugaras nyomtatáshoz, csak nem egyrétegben helyezi el a „cseppeket”, hanem rétegenként egymás fölé. Az elhelyezett cseppek egy különleges polimer anyagból vannak, melyek UV fény hatására megszilárdulnak. Ezeket hívjuk fotopolimereknek. Miután létrejön egy réteg, a gép további rétegeket hoz létre és addig ismétli a folyamatot, amíg az alkatrész el nem készül.
Az FDM és PolyJet gyártástechnológia során feldolgozott alapanyagok eltérők, így az elkészült termékek tulajdonságai is különbözőek lesznek. Íme néhány dolog, amit érdemes megfontolni a megfelelő technológia kiválasztásakor:
Alkalmazási terület – mire fogják használni az alkatrészt?
A PolyJet technológiával élethű, színes alkatrészeket lehet létrehozni, ezért nagyszerű választás koncepciómodellekhez.
Míg a PolyJet a részletgazdagságáról ismert, az FDM a tartós, végfelhasználásra kész alkatrészek gyártására helyezi a hangsúlyt. Ha az alkatrész esetében kulcsfontosságú a mechanikai szilárdság és tartósság, az FDM a legjobb választás.
Alapanyag
Ha az alkatrésznél különösen fontos a részletgazdagság, akkor PolyJet technológiát érdemes választani. Segítségével akár a legbonyolultabb színes textúrák is elkészíthetők. Különböző anyagtulajdonságú elemekre van szükség egy elemen belül? A PolyJet technológiának köszönhetően különféle rugalmasságú alkatrészek nyomtatására is lehetőség van, a gumiszerű alkatrészektől egészen a kemény műanyagokig.
Fused Deposition Modeling (FDM) technológia esetén széleskörű a felhasználható alapanyagok választéka. Az elkészült termék robosztus, és ellenáll a szélsőséges körülményeknek és vegyi anyagoknak is.
Felületi minőség – mennyire fontos az elkészült darabok felületi minősége?
Általában a felhasználás módja határozza meg. A koncepciómodellek és néhány prototípus esetén alapvető fontosságú lehet a felületkezelés és az esztétika. A Varinex Zrt. munkatársai 25 év tapasztalata alapján mindig az optimális megoldást fogják az ügyfeleknek javasolni!
Bár az FDM nem biztosít olyan részletgazdagságot, mint a PolyJet, ezzel a technológiával is létre lehet hozni komplex geometriájú alkatrészeket és bonyolult részegységeket. Az FDM-folyamattal létrehozott alkatrészeken a rétegek ugyan láthatók, de ezek nem befolyásolják az alkatrész szilárdságát és funkcióit.
Alkatrészméret
A technológia kiválasztásakor az alkatrész méretét is figyelembe kell venni. A PolyJet és az FDM hasonló maximális munkateret kínálnak: a PolyJet-alkatrészek maximális mérete 998 x 797 x 497 mm, az FDM-alkatrészek maximális mérete pedig 914 x 609 x 914 mm lehet.
Az FDM technológiával tetszőleges méretű alkatrészeket is létre lehet hozni. Ha az alkatrész mérete meghaladja a fenti megadottat, az alkatrészt fel lehet darabolni, és az egyes darabokat külön is el lehet készíteni. Ezeket később össze lehet illeszteni, az elkészült termék olyan szilárdságú és működésű lesz, mintha egyetlen alkatrész lenne.
Mindkét technológiának megvannak az előnyei. Végső soron az alkatrész felhasználási módja fogja meghatározni az alkalmazható 3D nyomtatási eljárást. Ha nagy felbontású, rendkívül finom alkatrészekre van szüksége, a PolyJet remek választás. Ha pedig a tartósság és a termék szélsőséges körülmények közötti működése fontos, érdemes az FDM-et előnyben részesíteni!
FDM és PolyJet technológia a 3D nyomtatás úttörőitől
Az FDM technológiát feltaláló család tagjának lenni azt jelenti, hogy a Stratasys kutatás-fejlesztés iránti erős elkötelezettség támogat minket. A VARINEX Zrt. 25 éves tapasztalattal rendelkezik a 3D nyomtatás szolgáltatás, vagyis a bérnyomtatás területén. Az FDM és a PolyJet technológiákat napi szinten használó mérnök kollégák a legmagasabb színvonalon tudják teljesíteni az ügyfelek megrendeléseit. Az évi több tízezer különféle alkatrész bérnyomtatása során szerzett tapasztalat biztosítja az FDM és a PolyJet technológia közötti megfelelő választást az adott alkalmazási területen.
Projektindítás előtt lépjen kapcsolatba a szakértő mérnök kollégákkal a 3dp@varinex.hu email címen!
A 3D nyomtatással végzett gyors prototípus-készítés egyszerű és költséghatékony lehetőséget biztosít arra, hogy a remek ötletekből sikeres termékek szülessenek. Koncepciómodellezésre lenne szüksége legújabb ötleteinek kipróbálásához? Mit szólna inkább, ha egy működőképes prototípusokon ellenőrizhetné a megvalósíthatóságot, mielőtt elkötelezné magát a költséges gyártószerszámok készítése mellett?
A Stratasys gyors prototípus-készítési megoldásai kellő rugalmasságot biztosítanak az ötletek sosem látott módon történő megvalósításához, teszteléséhez és finomításához, hogy a kész termék minden eddiginél gyorsabban elérhetővé váljon a piacon.
A VARINEX Zrt. 3D nyomtatás üzletága több évtizedes 3D nyomtatási tapasztalattal rendelkezik, és tudja, hogyan használható a technológia az adott alkalmazási területen. Projektindítás előtt lépjen kapcsolatba szakértő mérnök kollégánkkal. Kérdése van az FDM vagy a PolyJet technológiával kapcsolatban? Szívesen válaszolunk.
A Stratasys 3D nyomtatási megoldásai a szerszámkészítési igények széles skálájához bizonyítottan hatékonyabbak, pontosabbak és testreszabhatóbbak. Ráadásul a számos kiváló minőségű gyártási anyagunknak köszönhetően biztosított a munka megfelelő elvégzéséhez szükséges sebesség, pontosság, szilárdság és részletesség.
Tekintse meg, hogy a 3D nyomtatással végzett szerszámkészítés hogyan optimalizálja a működési hatékonyságot!
Fedezze fel a szerszámkészítési megoldásokat az Ön iparágában!
Kompozit szerszámkészítés
A hagyományos kompozit szerszámkészítés helyett a 3D nyomtatással készült szerszámok használatával elkerülheti a magas költségeket és hosszú átfutási időket. Könnyebbek, egyszerűen testreszabhatók az adott felhasználáshoz, és jelentős idő- és költségmegtakarítást biztosítanak a hagyományos megoldásokhoz képest. Összetett és üreges kompozit szerkezetek esetén a 3D nyomtatásos egyszer használatos szerszámok készítése a felhasználóbarát kimosási folyamat révén megkönnyíti a munkát.
Befogó készülékek, ülékek és gyártási segédeszközök
A gyorsabb és rugalmasabb szerszámkészítési folyamatnak köszönhetően lerövidítheti a gyártási ciklusokat és a termékek piaci bevezetéséhez szükséges időt. A 3D nyomtatott befogó készülékek, ülékek és gyártási segédeszközök készítése az összetettségtől függetlenül gyorsabb, olcsóbb, és kevesebb anyagveszteséggel jár a hagyományos szerszámgyártáshoz képest.
A VARINEX Zrt. 3D nyomtatás üzletága több évtizedes 3D nyomtatási tapasztalattal rendelkezik, és tudja, hogyan használható a technológia az adott alkalmazási területen. Projektindítás előtt lépjen kapcsolatba szakértő mérnök kollégánkkal. Kérdése van az FDM technológiával kapcsolatban? Szívesen válaszolunk.
7 kérdés 3D nyomtatás előtt - technológia és az alapanyag kiválasztása
Manapság számtalan, különféle 3D nyomtatási technológia és alapanyag közül választhat, és az eljárások száma idővel csak nőni fog. Fémnyomtatás, műanyag alapanyagból dolgozó lézerszinterezés, FDM és PolyJet technológia – és a lista folyamatosan bővül, az ipar által elfogadott eljárások sorában.
A dinamikusan változó additív gyártási piacon gyakran nehéz eligazodni, különösen akkor, ha még csak most ismerkedik a technológiával. A Stratasys-magyarországi partnerénél, a VARINEX Zrt. 3D nyomtatás üzletágnál a projekt- és alkalmazásmérnökein felmérik az Ön valós igényeit, hogy a leghatékonyabb technológiát és alapanyagot használhassa egy adott feladat megoldásához.
Számos ígéret és valótlan információ található az interneten, különféle 3D nyomtatási megoldások kapcsán, de fontos, hogy egy stabil és egy több, mint két évtizede a 3D nyomtatással foglalkozó magyarországi vállalattól kapjon segítséget, hogy eligazodjon ezen információ között.
Összeállítottunk egy listát, hogy segítsünk Önnek kiválasztani a megfelelő technológiákat és alapanyagokat:
Alkalmazás – Mi a termék, alkatrész felhasználási célja? Előfordulhat, hogy kisebb mennyiségben komplex terméket, alkatrészt kell gyártania, amihez erős anyagok, méretpontosság és ismételhetőség szükséges. A fogyóeszköznek tekinthető, precíziós öntéshez használt minták egyszer használatosak, és a felhasználás során ki kell égetni őket az öntőszerszámból.
Funkció – Mire szolgál az alkatrész? Lehet, hogy a koncepció jóváhagyására szolgál, így csak megjelenésében kell hasonlítania a végleges termékhez, alkatrészhez. Amennyiben funkcionális alkatrész elkészítése a cél, amely mechanikailag ellenálló, magasabb minőségű elvárásoknak is megfelelő alapanyagból és magasabb technológiai színvonalat kínáló berendezéssel kell gyártanunk.
A Stratasys technológiáival az ismétlési pontosság, a magasabb minőségi elvárásoknak megfelelő alapanyagok is rendelkezésre állnak.
Stabilitás – Hol használják majd az alkatrészt? Ha például magas hőmérsékleten is meg kell őriznie a teherbírását, illetve alakját, a Stratasys mérnöki és magas minőségi elvárásoknak megfelelő alapanyagaiból tudunk megoldást kínálni Önnek.
Kültéri használatra is alkalmasnak kell lennie? Ebben az esetben UV-álló alapanyagra lesz szüksége. ESD vagyis vezetőképes alapanyagra van szüksége? Az ABS-ESD7 alapanyagunkat tudjuk ajánlani. Érintkezni fog az alkatrész az emberi testtel? Akkor biokompatibilis alapanyagot kell hozzá használni. ABS M30-i és a PC ISO alapanyagok jelentik a megoldást.
Tartósság – Mi az alkatrész elvárt élettartama? Fontos figyelembe venni a gyártási ciklusok számát és az alkalmazás időtartamát is. Például az öntőformák vagy a gyártószerszámok ciklusok százainak és hosszan tartó súrlódásnak vannak kitéve, de a prototípus-készítéshez alig egy hétig kell kitartaniuk. Néhány 3D nyomtatáshoz használt anyag csak nagyon rövid ideig működik kifogástalanul, addig a Stratasys által kínált alapanyagok akár évekig is képesek megőrizni mechanikai tulajdonságaikat.
Esztétika – Milyen legyen az alkatrész megjelenése és tapintása? A PolyJet technológiával azonnal sima felületű, utómunkát nem igénylő alkatrészek állíthatók elő, de ezek nem minden alkalmazásra megfelelőek. A hőre lágyuló műanyagok és műanyagporok feldolgozási folyamataival, például a lézerszinterezéssel (LS) és a Fused Deposition Modelinggel (FDM), erősebb és tartósabb alkatrészek készíthetők, de ezek a felhasználó elvárásai alapján további felületkezelésre szorulhatnak. A Stratasys által kínált porfólióban minden ügyfelünk számára megtaláljuk az ideális megoldást.
Gazdaságosság – Mekkora a költségvetés és mennyi idő áll rendelkezésre? Ha előre meghatározott költségvetéssel dolgozik, és egy bizonyos alkatrészből X mennyiségre van szüksége, a döntéshozatalnál az ár nagyobb súllyal esik latba, mint az érték. A gyorsaság és a minőség eddig fordítottan arányos volt egymással – a gyártás gyorsítása a minőség romlásához vezetett. A Stratasys megoldásaival a bevezetési idő és a költségek csökkentése lehetséges anélkül, hogy lemondanánk a legkiválóbb minőségről.
Prioritások – Mi a legfontosabb tényező a döntéshozatalban? Gondolja át az elsődleges célkitűzést és a végső projektcélokat és ez alapján kell kiválasztani a 3D nyomtatási technológiák és alapanyagok körét.
Az alkalmazásának megfelelő additív gyártási technológia és anyag kiválasztása kulcsfontosságú az alkatrész teljesítménye és az eredmények szempontjából. Rendkívül fontos, hogy ismerje az egyes technológiák és alapanyagok előnyeit.
A VARINEX Zrt. 25 éve szolgáltat 3D nyomtatást és kínál profitorientált megközelítést. Projektindítás előtt lépjen kapcsolatba szakértő mérnök kollégánkkal a 3dp@varinex.hu email címen.
A 3D nyomtatással a
BAC-nek sikerült a két hetes munkafolyamatot mindössze néhány órásra
rövidítenie, így hamarabb be tudta szerelni a légszűrőházat, és megkezdhette
annak ellenőrzését, hogy a terv a közutakon is működőképesnek bizonyul-e.
A BAC Mono R nagyjából
270 km/h-s végsebességre képes, teljesítménye meghaladja a 340 féklóerőt (bhp),
tömegarányos teljesítménye pedig eléri a 612 féklóerőt tonnánként. Azáltal,
hogy több oxigént képes eljuttatni az égéstérbe, az autó légszűrőháza
kulcsfontosságú szerepet játszik abban, hogy az autó ilyen sebesség és
teljesítmény elérésére lehet képes. Működés közben az alkatrész jellemzően 100
°C feletti hőmérsékletnek van kitéve, ezért a végterméknek teljes egészében
szénszálas anyagból kell készülnie.
3D nyomtatással készült működőképes légbeszívó tesztelése a Mono R szuperautóval a közúti teljesítmény javítása érdekében.
A BAC csapata a Stratasys F900 Production 3D nyomtatóval kinyomtatta a légszűrőház prototípusát a cég szénszálakkal erősített, hőre lágyuló Nylon 12CF alapanyagából, amely akár 140 °C-os hőmérsékletnek is képes ellenállni. Ezzel a megoldással a vállalat mindössze néhány napon belül el tudta végezni a teljesítményteszteket, és biztos lehetett benne, hogy ha szükséges, még a hét vége előtt egy újabb változatot is össze tud állítani. A hagyományos prototípus-készítési módszerek alkalmazása esetén az esetleges tervmódosítások további két hetes várakozást eredményeztek volna.
„A gyors, hatékony, ipari szintű additív gyártás áttörést hozott a fejlesztési folyamatban – állapította meg Ian Briggs, a BAC tervezési igazgatója. – 3D nyomtatással órák alatt elkészült a légszűrőház pontos prototípusa, amelyet azonnal beépíthettünk az autóba, és megkezdhettük a tesztelést. Így sokkal hamarabb el tudtunk jutni a fejlesztéstől a gyártásig. A prototípus teljesítménye nagyon közel állt az öntőformában készült, szénszállal megerősített műanyagéhoz, és könnyen megállta a helyét a tesztpályán. Ez csak a kezdet volt a BAC csapata számára. A tervezői csapat a jövőben is szeretne élni az additív gyártás előnyeivel, hogy újabb és újabb korlátokat törhessünk át.”
3D nyomtatással készült befogó készülékek és ülékek: egy hatékony gyártási megoldás
A befogó készülékek és ülékek kulcsfontosságú szerepet játszanak a gyártásban. A befogó készülékek olyan egyedileg tervezett és legyártott szerszámok, amelyek egy művelet során a munkadarabok mozgását szabályozzák, az ülékek pedig az ipari folyamat végrehajtása közben egy adott helyen rögzítik a munkadarabokat. A befogó készülékek és ülékek a megbízható, ismétlődő tevékenységekből felépülő gyártás alappillérei.
A gyors és emberi beavatkozást szinte nem is igénylő képességeknek köszönhetően a 3D nyomtatás (más néven az additív gyártás) hatékony megoldást kínál a befogó készülékek és ülékek előállítására. A 3D nyomtatáshoz használt gyártási segédeszközök csökkentik az átfutási időt, költséghatékonyak miközben növelik a teljesítményt és a gyártási hatékonyság is.
Gyorsabb gyártás
A 3D nyomtatás nagyszerűsége többek között a rövidebb átfutási időben rejlik – egyes alkatrészeket akár néhány óra leforgása alatt le lehet gyártani. A befogó készülékek és ülékek első darabjainak elkészítése esetenként kritikus jelentőséggel bírhat, amely 3D nyomtatással minden eddiginél gyorsabban végrehajtható. A 3D nyomtatással készült befogó készülékek és ülékek előállításához elegendő egy digitális fájl, és nincs szükség tényleges szerszámkészítésre, így azok igény szerint legyárthatók. A CAD-fájl bármikor módosítható, majd a nyomtatás néhány nap alatt újból elvégezhető.
Költségcsökkentés
A rövid átfutási időnek, az alkatrészek összevonásának és az emberi beavatkozást nélkülöző ipari 3D nyomtatóval történő gyártásnak köszönhetően a befogókészülékek és ülékek ipari 3D nyomtatással történő előállítása költséghatékony megoldás. A 3D nyomtatással csökkenthető az anyagveszteség, valamint a készletezéssel és tárolással kapcsolatos kiadások.
Nagyobb teljesítmény
A 3D nyomtatással készült befogó készülékek és ülékek esetében az ergonómiai fejlesztések a gyártott szerszám költségét nem befolyásolják, de növelik a gyártási hatékonyságot. A CAD-fájlok az egyes nyomtatások előtt egyszerűen módosíthatók, így a szerszámok és segédeszközök zökkenőmentesen fejleszthetők és testreszabhatók. Az additív gyártással elérhető tervezési szabadságnak köszönhetően olyan geometriák is kialakíthatók, amelyekkel javul a szerszámok kezelhetősége és használhatósága, így kényelmesebb a munkavégzés. E befogó készülékeknek és ülékeknek köszönhetően tehát további költségek nélkül növelhető az alkalmazotti hatékonyság és biztonság.
Tervezési szabadság
A gyárthatósági célok mentén tervezett, megmunkálással és egyéb hagyományos gyártási eljárásokkal csak nehézkesen előállítható, összetett befogó készülékek és ülékek a STRATASYS ipari 3D nyomtatási technológiák révén jobb ár/érték aránnyal állíthatók elő. Az additív gyártás biztosította tervezési szabadságnak köszönhetően eltűntek a hagyományos gyártási megoldások korlátai, ezzel új lehetőségek nyíltak meg a szerszám-konfigurációkban. Mivel ezzel a technológiával összetettebb tervek is kezelhetők, a korábban több részegységből elkészített szerszámok mostantól akár egyetlen egységként is gyárthatók és megvalósíthatók.
A részegységek összevonásával a szerszámok tömege is csökkenthető, így kényelmesebb lehet a munkavégzés. A 3D nyomtatási folyamatokban használt nagy teherbírású műanyagok kiváló alternatívát jelentenek a hagyományosan használt fémekkel szemben. A 3D nyomtatással készült könnyű befogó készülékek és ülékek ugyanolyan vagy jobb képességeket kínálnak, és ráadásul egyszerűbben használhatók.
A hatékony megoldás
A 3D nyomtatással készült befogó készülékek és ülékek használatából eredő előrelépés hatalmas előnyt jelenthet az Ön cége számára is.
A Stratasys magyarországi partnereként a professzionális szolgáltatásokért felelős csapatunk segít feltárni annak lehetőségeit, hogy a 3D nyomtatással készült befogó készülékek és ülékek alkalmazásával hogyan optimalizálhatja cége működését. Ajánlatkérésért keresse kollégáinkat!
Ha további információkra kíváncsi a 3D nyomtatással készült befogó készülékek és ülékek előnyeivel, illetve azzal kapcsolatban, hogyan növelheti a gyártási szakértelmet ezzel a forradalmi technológiával, töltse le tanulmányunkat!
A gyakori 3D nyomtatási eljárások eredményeinek összehasonlítása
Számos 3D nyomtatási módszer közül választhat az SLA-tól kezdve az FDM-en át a porágyfúziós technológiáig. De hogyan teljesítenek ezek az eljárások a pontosság és a megismételhetőség terén?
Ez a Todd Grimm 3D nyomtatási szakértő által írt tanulmány az egyes 3D nyomtatási eljárások változékonyságának a mechanikai tulajdonságok és a méretbeli pontosság terén való vizsgálatával ad választ ezekre a kérdésekre.
Egy 3D nyomtató, ami termelésre és gyártásra is kész?
Sokan rajongunk a 3D nyomtatásért, de sokszor nehéz eldönteni, hogy ezzel a 30 éve töretlenül fejlődő és változó technológiával kapcsolatban melyek a valós, és melyek a túlzó állítások. Manapság leggyakrabban a „termelésre kész” hívószóval találkozhatunk. De mit is jelent ez valójában?
A 3D nyomtatási technológiát már három évtizede használják prototípusok készítésére. De a 30-ból jó 20 év során a korai alkalmazók – elsősorban a járműiparban – hogy eleget tehessenek a gyártási igényeknek, egyre nagyobb elvárásokat támasztottak egyes 3D nyomtatási technológiákkal szemben.
A „gyártásra készség” népszerűségét alapvetően két tényező motiválhatja. Az első a befektetés. Számos, komoly háttérrel rendelkező vállalat lép be az iparágba azért, hogy a gyártási igények kielégítése érdekében egy új technológiát vagy egy már meglévő technológia egy új változatát hozza létre. A másik tényező a technológiai érettség. A Stratasys azon dolgozik, hogy finomítsa a gyártásban érdekelt felhasználóknak kínált technológiát. A repülőgépbelsők kialakításához készült F900mc Aircraft Interiors Solution (AIS) megoldás formájában az iparág egyedülálló ismétlési pontossággal és megbízhatósággal rendelkező additív gyártási eljárása jött létre.
De hogyan teljesít a Stratasys technológia más iparági szereplők „gyártásra kész” technológiáihoz képest?
Az elmúlt hónapban a 3Dprint.com egy ötrészes sorozatot tett közzé, amely pontosan ezt a kérdést vizsgálja. A sorozat címe „Az additív gyártási eljárások változékonysága” (Variability of Additive Manufacturing Processes), a szerző Todd Grimm. A sorozat hat technológiát hasonlít össze, köztük a Stratasys F900mc AIS FDM-technológiát, valamint az MJF, az SLA, az SLS és a CLIP technológiát, továbbá egy márkafüggetlen FFF-folyamatot – a fő mérce a megismételhetőség volt. A mechanikus tulajdonságokat, a geometriai pontosságot és a precizitást (megismételhetőséget) statisztikai módszerekkel értékelték, szemben a korábbi, más és más eredményekkel végződő tanulmányokkal. A tesztelést függetlenül, robusztus és következetes módszertannal hajtották végre.
Ami a mechanikai tulajdonságokat illeti, az FDM, az MJF és az SLA is meglehetősen jól teljesített: a szakítószilárdság és a rugalmassági modulus variációs együtthatói (CoV) az 1–4%-os tartományon belül voltak. Az SLS, a CLIP és a márkafüggetlen FFF már nem teljesített ilyen jól. Különösen a márkafüggetlen FFF z tengelyi rugalmassági modulusának CoV-értéke volt elképesztő (54%-os), a tulajdonságok ebben az esetben tehát gyakorlatilag kiszámíthatatlanok. A Stratasys FDM technológiájának 1,8%-os szórásértékével összehasonlítva egyértelmű, hogy nem minden FDM/FFF, extrudálással működő gyártási technológia tekinthető egyenlőnek a felhasználók szempontjából.
Ami a méreteket illeti, számos kis és nagy léptékű mérést végeztek annak érdekében, hogy a pozitív és negatív alaksajátosságokat jellemezhessék. A CLIP technológia az általa kínált alacsony nyomtatási volumen miatt sajnos nem került be a tanulmány ezen részébe. A márkafüggetlen FFF technológiával készült vizsgálati alkatrészeket a deformálódások csökkentése érdekében a nyomtatás után fel is kellett melegíteni, így azonban egyes méréseket nem lehetett elvégezni.
Az adatokból jól látható, hogy a különböző technológiák különböző szempontokból teljesítettek jól. Érdekes módon az SLS és a márkafüggetlen FFF technológia remek alaksajátosság-pontosságot biztosít, a nagymértékű szórás azonban azt mutatja, hogy ezek a technológiák pontosak ugyan, de nem precízek. Ezzel szemben az SLA rendkívül magas precizitást és konzisztens eredményeket biztosít, az alaksajátosságok azonban viszonylag pontatlanok. Grimm ezt következőképp összegezte: „Az MJF-nél egyszerre hiányzott a pontosság és a precizitás. A pontosság és a precizitás legjobb kombinációját pedig az FDM biztosította.”
A 3D nyomtatás rengeteget fejlődött az idők során. Bár a technológiák mindegyike továbbra is a „sorozatgyártási képesség” elérésére törekszik, az újdonságok és a régóta megbízhatóan teljesítők közötti különbségek egyértelműek, hiszen a Stratasys évről évre az ügyfelekkel szorosan együttműködve fejleszti termékeit. Ez nehéz és időigényes munka, de „a tanulmány bemutatta, hogy a mechanikai tulajdonságok és a geometriai méretek szórása terén az FDM technológia jár az élen a gyártásra készségért folytatott versenyben.”
Ebben az esetben nem csupán egy múló divatról van szó. Felkészült a „gyártásra kész” technológiákra és a következő lépésre?
A VARINEX Zrt. 25 éve szolgáltat 3D nyomtatást és kínál profitorientált megközelítést. Projektindítás előtt lépjen kapcsolatba szakértő mérnök kollégánkkal a 3dp@varinex.hu email címen.
Átfogó útmutató műanyag alkatrészek 3D nyomtatásához PolyJet technológia használatával
Mi az a PolyJet technológia és hogyan működik?
Páratlan felbontású és részletességű prototípusokat, modelleket és mintákat hozhat létre a PolyJet technológia segítségével. Tervei élénk színekkel és végtermékszintű minőségben valósíthatók meg.
Több mint 100 anyagkombináció közül választhat, így különböző anyagtulajdonságokat és esztétikai jellemzőket (például rugalmasságot és átlátszóságot) jeleníthet meg közvetlenül az alkatrészekben.
A PolyJet egy UV fényre szilárduló akrilbázisú műgyantát használó, a tintasugaras nyomtatáshoz hasonló elven működő, de 3 dimenziós nyomtatási eljárás.
A PolyJet technológia a nyomtatáshoz 14 vagy 27 mikronos rétegekben teríti el a fényérzékeny polimer anyagot, és UV-fényt használ az anyag megszilárdításához.
Az így elkészült modellek nem igényelnek utókezelést, hanem azonnal végleges mechanikai tulajdonságokkal kerülnek ki a 3D nyomtatóból.
A PolyJet képes merev és rugalmas anyagokat is nyomtatni ugyanazon nyomtatási feladatban, így szerszámkészítés nélkül állíthatók elő, hagyományos gyártási eljárással, több komponensű fröccsöntéssel készülő alkatrészek. Ez a technológia 30–95 közötti Shore A keménységű alkatrészek létrehozására is képes.
Mivel a PolyJet használata esetén, hagyományosan a több komponensű fröccsöntéssel előállítható alkatrészek gyártásához nincs szükség szerszámkészítésre és utólagos megmunkálásra. Gyakran alkalmazzák elasztomer tulajdonságú felületet igénylő prototípusok (például markolatok és gombok) gyártására, illetve a szükséges rugalmas alkatrészek anyagkeménységének tesztelésére.
Ha további információkra kíváncsi a PolyJet működéséről, tekintse meg a PolyJet technológiát bemutató alábbi videónkat:
https://youtu.be/2Xnd2wAPPRs
Valósághű felületkialakítás a PolyJet segítségével
A PolyJet tökéletesen képes azon tervezők igényeinek megfelelni, akik valósághű modelleket szeretnének, de eddig kénytelenek voltak beérni a pontatlan színekkel és durva és rossz minőségű felületekkel elkészült modellek használatával. A PolyJet a VARINEX Zrt. leggyorsabb technológiája, amelynek segítségével az alkatrészek néhány óra alatt kiszállításra készen gyárthatók le. Kérjen árajánlatot vagy kollégáink segítségét, ha további kérdései vannak PolyJet technológiával történő gyártásával kapcsolatban.
A PolyJettel történő 3D nyomtatás lehetővé teszi több alapanyag felhasználását egyetlen nyomtatási folyamatban, így gyorsan létrehozhatók valósághű alkatrészek, és már a termékfejlesztési ciklus korai szakaszában megkezdhető a tervváltozatok fizikai modelljeinek előállítása.
A PolyJettel történő 3D nyomtatás a lehető legnagyobb pontosságot és részletgazdagságot biztosítja a termékek gyártása során.
A PolyJet leggyakoribb alkalmazási területei
A PolyJet-anyagok széles választékával többféle anyagot is kombinálhat – egy modellen belül – több komponensű fröccsöntés szimulálásához, rugalmas és többszínű alkatrészek előállításához, valamint összetett modellek létrehozásához.
A működési és esztétikai igények kielégítésére szolgáló fényérzékeny polimer anyagok alkalmazása révén a PolyJet költségkímélő és hatékony megoldást biztosít a prototípus-készítéshez és a modellezéshez.
Koncepció modellezés
Használja a PolyJet technológia színes és széleskörű alapanyag-tulajdonságokat kínáló megoldásait a termékei sorozatgyártásra történő előkészítése során.
Gyors prototípus-készítés
Kipróbálhatja az egyes tervváltozatokat, és megvalósíthatja ötleteit a PolyJet technológia segítségével. További információk
Anatómiai modellezés
Élethű anatómiai modellek a kezelések valósághű szimulálásához.
Alkatrészek PolyJet technológiás 3D nyomtatásához használható alapanyagok Önnek
A PolyJet használatában az évek során felhalmozott tapasztalatunk révén szakértővé váltunk a 3D nyomtatással készített, lenyűgöző minőségű alkatrészek gyártásában számos iparág és többféle anyag esetében is.
Fedezze fel a PolyJet-anyaglehetőségek elképesztően széles skáláját, és használjon akár többféle anyagot is ugyanazon modell esetében. Vigye véghez a lehetetlent a prototípus-készítésben – szimuláljon több komponensű fröccsöntést, készítsen rugalmas, többszínű alkatrészeket, és hozzon létre összetett modelleket akár 14 mikronos rétegvastagsággal, nagy felbontásban (a szabványos 27 mikron helyett).
Vero (merev)
A Vero merev és tartós, fényérzékeny polimerből készült alapanyag, amely ideálisan használható gyönyörű, valósághű, méretpontos modellek gyártásához, ahol elengedhetetlen a részletgazdagság és a kiváló minőségű felület.
Agilus 30A–95A (rugalmas)
Az Agilus egy gumiszerű, kiváló szakítószilárdságú, ismétlődő meghajlításnak ellenálló fényérzékeny PolyJet-alapanyag. Ez a gyors prototípus-készítéshez és tervellenőrzéshez ideálisan használható, gumiszerű anyag képes a gumiszerű termékek megjelenésének és működésének szimulálására.
Agilus + Vero (több komponensű fröccsöntés)
Az elasztomer tulajdonságú termékfunkciók koncepciómodellezése használatos, több komponensű fröccsöntéssel rugalmas és merev elemekből álló alkatrészeket egyetlen lépésben lehet előállítani. A PolyJet több komponensű nyomtatási eljárása a gumiszerű Agilus anyagot kombinálja a Vero anyagokkal.
Digital ABS Plus
A Digital ABS Plus™ a normál ABS műanyagok szimulálására használható, mivel magas szintű hőállóságot és ellenállóságot biztosít. Alkalmas olyan alkatrészek szimulálására, amelyek esetében nagy ütésállóság és lengéscsillapítás biztosítása szükséges. Jelentősen javítja a tervellenőrzéshez és funkcionális teszteléshez használt alkatrészek és prototípusok mechanikai teljesítményét.
Rigur alapanyag
A Rigur ellenálló és tartós, a polipropilén szimulálására alkalmas anyag. Megbízható teljesítményt nyújt, kiválóan használható mérettartó prototípusok készítéséhez. Ideálisan használható rugalmas bepattanó kötésekhez és zsanérokhoz.
Nem tudja, hol kezdjen hozzá? Szakembereink készséggel állnak rendelkezésére.
Készen áll a PolyJettel történő alkatrészgyártásra?
A VARINEX Zrt. szolgáltatásai mögött nem csupán az iparágvezető Stratasys áll – a 25 éves 3D nyomtatási tapasztalat mellett egy fáradhatatlan mérnökcsapattal is rendelkezünk, amely bármely projektszakaszban segítséget nyújt Önnek. Ajánlatkéréshez küldje el nevét/email címét és telefonszámát a 3DP@varinex.hu email címre csatolva a CAD-modelljét. Kollégáink hamarosan felveszik Önnel a kapcsolatot.
A PolyJet több iparágban történő alkalmazása során egyéni megoldásokat fejlesztettünk ki, így képesek vagyunk kielégíteni a legkülönbözőbb igényekkel rendelkező ügyfeleink elvárásait is.
ISO 9001 minőségbiztosítási tanúsítványunk biztosítja, hogy mérnökcsapatunk nem nyugszik addig, amíg ki nem elégíti a pontos alkatrészekkel kapcsolatos igényeit.
Az FDM eljárás a 3D nyomtatással történő gyártás tervezési szabadságát kínálja, emellett felgyorsítja a fejlesztési és gyártási folyamatokat. Lehetővé teszi a nagy szilárdságú, hőre lágyuló műanyagok felhasználását már a prototípusok készítésénél is.
Olyan nagy szilárdságú, mérnöki felhasználású alapanyagokat is alkalmazhat, mint a polikarbonát és az ULTEM™ 9085 resin hőre lágyuló műanyagok.
Az FDM technológiával hőálló és vegyi anyagoknak ellenálló, kiemelkedő szilárdság–tömeg aránnyal rendelkező alkatrészek és működőképes prototípusok is készíthetők.
Hogyan működik az FDM technológia?
A Fused Deposition Modeling (FDM) az egyik legszélesebb körben alkalmazott 3D nyomtatási eljárás napjainkban, amelynek során megolvasztott műanyagot oszlatnak szét a nyomtatási felületen vékony rétegekben. Az FFF (Fused Filament Fabrication) néven is ismert 3D nyomtatási eljárás azonos alapokon nyugszik, mint az FDM eljárás, azonban az FDM technológia a magas hőmérsékletű, zárt munkatér és a több, mint 30 éves fejlesztési munka eredményeként olyan nagyteljesítményű műanyagok nyomtatására is alkalmas, amelyre az FFF technológia nem.
Az FDM gyártási technológiát széles körben használják a repülőgépiparban, a közlekedési iparágban és különböző ipari alkalmazásokban.
Az FDM technológia lehetővé teszi olyan mérnöki felhasználású, hőre lágyuló műanyagok használatát, amelyek nehéz körülmények között, kemény teszteken és nagy igénybevételt jelentő alkalmazási területeken is megállják a helyüket.
Az FDM technológiával a kizárólag 3D nyomtatással előállítható geometriák gyártásához az iparból már jól ismert, nagy szilárdságú, stabil műanyagokat használhatja.
Az FDM leggyakoribb alkalmazási területei
Az FDM segítségével a vállalatok még több lehetőségre mondhatnak igent az alacsony darabszámú, egyedi gyártási alkatrészek előállítása terén.
A mérnöki felhasználású, hőre lágyuló műanyagok és az FDM
Számos iparág-specifikus hőre lágyuló műanyag közül választhat, ha speciális tulajdonságok elérése a cél. A nehézgépiparban és a közlekedési ágazatban a PC-ABS-t használják kiváló szilárdsága miatt, a repülőgépipari mérnökök pedig az ULTEM™ 9085 és az ULTEM™ 1010 resineket részesítik előnyben az FST-minősítésük és az FAA 25.853-as számú szabványának való megfelelőségük miatt.
Egyes anyagok biokompatibilitásuknak és MRI-készülékekben való használhatóságuknak köszönhetően egészségügyi alkalmazásokra is ideálisak.
Az FDM technológiát feltaláló család tagjának lenni azt jelenti, hogy a Stratasys kutatás-fejlesztés iránti erős elkötelezettsége támogat minket. A Stratasys csapata folyamatosan kutatja az új alkalmazási területeket és lehetőségeket.
A VARINEX Zrt. több évtizedes 3D nyomtatási tapasztalattal rendelkezik, és tudja, hogyan használható az FDM technológia az adott alkalmazási területen. Projektindítás előtt lépjen kapcsolatba szakértő mérnök kollégánkkal.
Kérdése van az FDM technológiával kapcsolatban? Szívesen válaszolunk.
Egy független tanulmány során, amelyben a Stratasys F123 sorozatú 3D nyomtatóit négyféle asztali nyomtatóval hasonlították össze, az F123 sorozat nagy előnnyel végzett az élen.
Az alábbi űrlap kitöltése után emailen elküldjük Önnek a tanulmányról készült összefoglalót. Ha többet szeretne megtudni az egyes nyomtatók összehasonlításáról, vegye fel a kapcsolatot kollégáinkkal.
Ismerje meg a Stratasys mérnöki FDM alapanyagait: Polikarbonát, PC-ABS, Nylon
Ha Stratasys FDM (Fused Deposition Modeling) 3D nyomtatót használ, az alapanyaglehetőségek végtelennek tűnhetnek, de fontos, hogy megbizonyosodjon arról, hogy az Önnek legjobban megfelelő Stratasys alapanyagokat használja az FDM alkalmazásokhoz. Egy előző cikkünkben röviden ismertettük az ABS, az ASA és a PLA alapanyagokat. Most az FDM mérnöki alapanyagok ismertetésén a sor: a Polikarbonát, a PC-ABS és a Nylon alapanyagokat mutatjuk be, amelyek Stratasys Fortus típusú nyomtatóval rendelkező ügyfelek számára elérhetőek a „mérnöki műanyagok” csomagban.
Mi a Polikarbonát (PC)?
A polikarbonát anyagok a folyamatosan ismétlődő karbonát monomer szerkezetükről kapták a nevüket, sokan Lexánként ismerhetik (a Lexan a SABIC védjegye). A Polikarbonát (PC) rendkívül népszerű az iparban. Nagy szilárdság, ütésállóság és könnyű kezelhetőség jellemzi az ebből az alapanyagokból készült modelleket. A többi amorf polimerhez hasonlóan a PC alapanyag jól nyomtatható, de kontrollálni kell a zsugorodását, ebből kifolyólag nem tanácsos a nyílt munkaterű nyomtatókkal való használata, de a zárt, fűtött és ipari sztenderdek szerint kontrollált hőmérsékletszabályozással és -eloszlással rendelkező berendezésekben a nyomtatása nem jelent kihívást a felhasználóknak.
A Stratasys Polikarbonát fehér színben kapható minden Fortus rendszerhez. Nyomtatható törhető PC-támaszanyaggal (standard T16 tippekkel) vagy oldható SR-100 (T12-SR100 tippekkel) támaszanyaggal, 127-330 mikron rétegvastagsággal.
Működési szempontból a PC könnyen használható, ugyanazokkal az alaplapokkal mint az ABS és az ASA.
Fontos, hogy a PC hajlamos a termikus sokkra, így a legjobb elkerülni a forró alkatrészek hideg tisztító tartályba való helyezését vagy akár fordítva, hogy elkerüljék a repedéseket.
140° C-nál (4,5 Bar nyomásnál) a PC-nek van a legmagasabb hőstabilitása a konkurens alapanyagokkal szemben. Kivételesen erős tömörítésnél, a tömör részek terhelése deformáció nélkül, akár öt tonna/cm3is lehet. Nagy kopásállósága miatt remek lemezformázó szerszámok elkészítésére, és sok esetben jobb választás, mint a hagyományos acél szerszámok. A szerszámozás mellett a Polikarbonát remekül használható ülékek és mérősablonok, illetve vákuumszerszámok gyártására is.
3D nyomtatott PC palackfúvó szerszám
Kiváló elektrosztatikus szigetelő. Ha a nyomtatott alkatrészeket érintkezésbe kell hozni élelmiszerekkel, akkor biokompatibilis változatban is elérhető fehér vagy áttetsző színben (ISO 10993 USP Class VI).
Mi a PC-ABS?
3D nyomtatott PC-ABS szerszám markolat
A PC-ABS a Polikarbonát és az ABS ötvözete. 30% -kal erősebb, mint az ABS, 13% -kal magasabb a hőtűrése, ezen felül hajlékonyabb és rugalmasabb, mint a PC. A fekete PC-ABS minden Stratasys Fortus FDM géppel nyomtatható, szabványos tipekkel (T10-T20) és alaplapokkal. A PC-ABS alapanyag már elérhető a Stratasys F370-hez is. A magasabb hőtűrés miatt jó választás mérősablonokhoz, szerelő ülékekhez, vákuumszerszámokhoz is. A PC-ABS oldószerrel simítható, pórusai lezárhatók, jó választás lehet tömör, porozitásmentes alkatrészeket igénylő alkalmazásokhoz is.
Mi a Nylon?
A DuPont védjegye után a Nylon név most már a poliamid néven ismert polimerek osztályának szinonimája. Míg a legtöbb Stratasys FDM-anyag amorf polimerként van besorolva, a nylonok félkristályosak, mert a molekuláris szerkezetük képes rendezett kristályszerkezeteket kialakítani. Ezek a kristályos szerkezetek lehetővé teszik, hogy a nylon anyagok rendkívül erősek maradjanak, rendkívül vékony szálakban is; ebből kifolyólag nagyon népszerűek a textiliparban. A 3D nyomtatás során a nylonok amorf polimerekként viselkednek, de a nyomtatott alkatrészeket kristályos szerkezetekké lágyíthatjuk, drasztikusan javítva azok szilárdságát, hőállóságát és izotropiáját.
A Nylon12 fekete színben elérhető minden Stratasys Fortus FDM gépen. A szabványos tipekkel 127-330 mikronrétegben nyomtat speciális építőlemezeken, oldható SR-110 támasztóanyaggal (T12-SR100 tip). A nylonok különösen higroszkóposak (nedvességet szívnak magukba a levegőből) és szárazon kell tartani őket ahhoz, hogy jól nyomtathatók legyenek. Használatakor különösen ügyelni kell arra, hogy az alapanyagtároló kaniszter zárva legyen, és tárolásnál is fontos, hogy ne kapjanak nedvességet. A nyomtatás után az összes nylon alkatrészt legalább 4 órán át hőkezelni kell, hogy az a maximális teljesítményt nyújtsa. A nylon alkatrészek általában jól nyomtathatók, a sacrificial tower beállítással javíthatunk a jó felületi minőségen.
A Nylon nagyon erős, keményebb, de kevésbé hajlamos a fáradásos törésre, mint a PC-ABS, ráadásul jobb kémiai ellenállással is rendelkezik. A Nylon12 a legjobb választás pattanókötésekkel rendelkező funkcionális prototípusokhoz.
3D nyomtatott Nylon 12-CF szénszálas fúrósablon
Az F900 esetében elérhető a fekete Nylon6, 254 és 330 mikron rétegvastagsággal. A Nylon12-hez hasonlóan a Nylon6 is rendkívül hajlékony, de 50%-kal nagyobb szilárdsággal és hőállósággal rendelkezik, mint a Nylon12, és majdnem kétszer olyan merev. Tehát, bár sok alkalmazásban a Nylon12 fejlettebb verziójának tekinthető, ez jobban megfelel szerszámok elkészítéséhez. Az olyan befogókhoz és ülékekhez, amelyeknek merevnek kell lenniük, de bírniuk kell a kemény kezelést és az esetleges elejtést, nagyszerű a Nylon6 alapanyag.
Összefoglalva, a műszaki hőre lágyuló műanyagok ideálisak, ha a szilárdság, a hőtűrés, a merevség és a tartósság követelményei alapján a szabványos ABS, ASA és PLA műanyagok már nem megfelelőek az adott alkalmazáshoz. A PC, PC-ABS és a Nylon jól illeszkedik a funkcionális prototípusokhoz és végleges alkatrészekhez.
A VARINEX Zrt. szolgáltatásai mögött nem csupán az iparágvezető Stratasys áll – a 25 éves 3D nyomtatási tapasztalat mellett egy fáradhatatlan mérnökcsapattal is rendelkezünk, amely bármely projektszakaszban segítséget nyújt Önnek. Kérdése van? Segítünk! Projektindítás előtt lépjen kapcsolatba a szakértő mérnök kollégákkal a 3dp@varinex.hu email címen!